Ordered direct implicational basis of a finite closure system
نویسندگان
چکیده
Closure system on a finite set is a unifying concept in logic programming, relational data bases and knowledge systems. It can also be presented in the terms of finite lattices, and the tools of economic description of a finite lattice have long existed in lattice theory. We present this approach by describing the so-called D-basis and introducing the concept of ordered direct basis of an implicational system. A direct basis of a closure operator, or an implicational system, is a set of implications that allows one to compute the closure of an arbitrary set by a single iteration. This property is preserved by the D-basis at the cost of following a prescribed order in which implications will be attended. In particular, using an ordered direct basis allows to optimize the forward chaining procedure in logic programming that uses the Horn fragment of propositional logic. One can extract the D-basis from any direct unit basis Σ in time polynomial in the size s(Σ), and it takes only linear time of the cardinality of the D-basis to put it into a proper order. We produce examples of closure systems on a 6-element set, for which the canonical basis of Duquenne and Guigues is not ordered direct.
منابع مشابه
The multiple facets of the canonical direct unit implicational basis
The notion of dependencies between ”attributes” arises in many areas such as relational databases, data analysis, data-mining, formal concept analysis, knowledge structures . . .. Formalization of dependencies leads to the notion of so-called full implicational systems (or full family of functional dependencies) which is in oneto-one correspondence with the other significant notions of closure ...
متن کاملFrom an Implicational System to its Corresponding D-basis
Closure system is a fundamental concept appearing in several areas such as databases, formal concept analysis, artificial intelligence, etc. It is well-known that there exists a connection between a closure operator on a set and the lattice of its closed sets. Furthermore, the closure system can be replaced by a set of implications but this set has usually a lot of redundancy inducing non desir...
متن کاملThe Prime Stems of Rooted Circuits of Closure Spaces and Minimum Implicational Bases
A rooted circuit is firstly introduced for convex geometries (antimatroids). We generalize it for closure systems or equivalently for closure operators. A rooted circuit is a specific type of a pair (X, e) of a subset X, called a stem, and an element e 6∈ X, called a root. We introduce a notion called a ‘prime stem,’ which plays the key role in this article. Every prime stem is shown to be a ps...
متن کاملOn implicational bases of closure systems with unique critical sets
We show that every optimum basis of a finite closure system, in D. Maier’s sense, is also right-side optimum, which is a parameter of a minimum CNF representation of a Horn Boolean function. New parameters for the size of the binary part are also established. We introduce the K-basis of a general closure system, which is a refinement of the canonical basis of V. Duquenne and J.L. Guigues, and d...
متن کاملState Dependent Multi channel Queuing System with Ordered Entry
In the present study, we analyze the multi-channel service system with ordered entryfrom finite-source and finite-storage at each channel. The arrival and service rates are assumedto be state dependent. The steady state probabilities of the system are obtained by usingChapmann-Kolmogorov equations. Some other performance indices viz. utilization of servers,expected number of units in the system...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Applied Mathematics
دوره 161 شماره
صفحات -
تاریخ انتشار 2012